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Abstract 
This paper presents a novel adaptation of Particle Swarm Optimization (PSO) algorithm based on Roach Infestation 
Optimization (RIO). This algorithm is inspired on cockroaches’ scientifically demonstrated behaviours. Cockroaches have 
been able to survive over the centuries and that is only possible due to their capacity to live in community and share 
information, such like dark spots to hide and food locations. Genetic Roach Infestation Optimization (GRIO) is more tied to 
roaches’ life than RIO. It uses a multi-swarm and self-adaptive strategy to avoid falling into local optimum and converging 
too soon. Using a self-adaptive inertia weight, it’s possible to explore a global search, or a local one, according to the 
algorithm feedback. This algorithm allows, in the same space, the presence of two different families of cockroaches that 
behave independently. To keep the information balanced between both families, reproduction behaviour (based on a regular 
Genetic Algorithm) is carried out. In that reproduction, babies will have a crossover of parents’ information. To preserve 
diversity some mutations are enabled. Afterwards, the proposed algorithm is tested in some multimodal and hard 
benchmark functions in comparison to other algorithms. Results clearly support that cockroaches’ life adapted into PSO 
algorithm greatly improves optimization results. 
 

 
I. Introduction 

 
Groups of birds, insects and fishes are able to synchronize velocities, turning manoeuvres and to perform several group 
activities (landing for example). Such behaviour has intriguing several authors that have been trying to understand the way 
that kind of social behaviour works.  

Craig [1] was the first author presenting some work in flocks simulation. He presented this phenomena as three simple rules: 
collision avoidance - since it is impossible that two particles (bird, fish, insect among others) exists in the same position, at 
the same time, every single one avoids to crash with other flock mates; velocity matching - each flock’s member attempts to 
match his own velocity with nearby mates; and flock centering - each particle tries to keep close to nearby mates. 

Kennedy and Eberhart, in 1995 [2], pioneered an entire new approach to optimization problems when, inspired in real 
world swarm intelligence, the authors developed a new optimization algorithm based on some behaviours of birds flocking, 
Particle Swarm Optimization (PSO). In order to improve its performance, a lot of PSO variations were developed and studied  
(some examples of those variations are available in the Master Thesis Genetic Roach Infestation Optimization). The aim goal 
is always to achieve global optima in the less possible iterations, to escape from local optima and to avoid premature 
convergence.  

Due to advances in roaches’ studies, a lot of characteristics (listed further in this paper) regarding these animals were 
disclosed. Understanding that roaches’ social behaviour was even more complete than the birds one, in 2008, Havens et al 
developed the first cockroaches’ based algorithm, Roach Infestation Optimization (RIO) [3]. This work was the inspiration 
to adapt even more roaches’ behaviour to these kind of algorithms.  

 

II. PSO Description 
 
Kennedy and Eberhart [3] defined a world whose dimensions were the variables of the chosen objective function, based on 
several studies mentioned above. So, if our objective function, Z, has D variables, there’s a swarm (in a D-dimensional world) 
where each ith particle exists on a certain position Xi=[xi1 xi2 … xiD] T and moves by a certain velocity Vi=[vi1 vi2 … viD] T (limited 
to Vmax), during t iterations, trying to find the best possible position. The best location is defined proportionally to the fitness 
function. It means that if one wants to minimize Z function, the best position will be defined by the smaller value that a 
particle’s position achieves. 

In this optimization approach, particle’s velocity on instant k, Vk, depends on the previous velocity Vk-1, on the particle’s best 
position ever achieved, Pbest (individual component), and on the position of the best positioned particle in all swarm Gbest 
(social component). That way, it is possible to calculate the next position using the following equations: 
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On these equations, r1 and r2 are D-dimensional vectors with random values between 0 and 1. These random vectors help to 
keep diversity on swarm. C1 and C2 are cognitive and social factor, respectively. These are the parameters that define the 
influence of cognitive and social components on particle’s velocity. Usually they are set, as suggested by Kennedy [4], in a 



way that  C1 plus C2 equals 4. However, in 2001, Carlisle and Dozier [5], developed their research on cognitive and social 
parameters influence and found out that, for some functions, a sum lower than 4 was the best choice (like Schaffer F6). They 
also found out that, the values usually used on common sense of 2.05 to both C1 and C2 weren’t the bests ones. They came to 
the conclusion that the best choice should be a ratio of 2.8 of cognitive parameter to 1.3 of social one. w is inertia weight,  
defined by Eberhart and Shi, in 1998 [6]. It receives a value between 0 and 1 and it defines the importance of particle’s  
previous velocity. If it is a lower value there is a preference in local search once the previous velocity it is not valorised and 
the final velocity will be smaller. If it is a higher value, there is a preference in global  search, because the previous value is 
highly taken into account. 

Later, in order to keep all the advantages from a global search in the beginning and a local search in the end a PSO with linear 
decreasing inertia weight was introduced [7]. 

𝑤(𝑘) = 𝑤𝑚𝑎𝑥 −  (
𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛
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In equation 3, k is iteration number and wmax and wmin are, respectively, maximum and minimum possible values to inertia 
weight. There are three types of inertia weight: constant and random; time varying (like the one represented on equation 
3); and adaptive ones, where inertia weight is adjusted according to some feedback parameters.  

III. RIO Description 
 
Roach Infestation Optimization (RIO) [3] stands for the first algorithm based on cockroaches’ social life. Havens et al, 
understanding that cockroaches enjoy family company and socialize between them, changed the social component in PSO’s 
velocity update equation. 

Instead of learning only from best-positioned particle, in RIO, cockroaches learn from neighbours if there’s socialization. 
Therefore, when a cockroach can find friends in its detection radius dr (equation 4), there’s the probability (table 1) that 
those roaches socialize.  
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That socialization is carried out by an exchange of knowledge according to equation 5: 

𝑏𝑘1 = 𝑏𝑘2 = 𝑎𝑟𝑔 min{𝑍(𝑏𝑘𝑗 )} , 𝑗 = {1,2}                                                             (5) 

Where bk is best known position (for roach 1 and roach 2) and Z is the objective function. So, every single time a roach meets  
another one, and they socialize, both roaches will remember the same best position ever achieved by  a roach. 

Finally, velocity equation on RIO algorithm will be as equation 6 displays: 
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Where w is inertia weight, C1 and C2 are cognitive and social component, respectively, r1 and r2 are D-dimensional vectors 
with random values between 0 and 1 and bv is the best visited position (same as past best (Pbest) position from PSO). 

 

Table 1: Probability of stop when finding N friends [8]. 
Number of Neighbours Probability of socialize 

  1 0.49 
2 0.63 

≥3 0.65 

 
IV. GRIO Description 

 
In spite of the evolution from PSO to RIO, one still can’t avoid efficiently premature convergence and local optima. 
Understanding such drawback, in this work, a novel optimization algorithm developed to continuous problems is proposed,  
Genetic Roach Infestation Optimization (GRIO).  

GRIO is more tied to cockroaches’ behaviour than RIO and it’s highly founded on the following characteristics: 

1. Cockroaches always seek the darkest possible spot to hide [9].  
2. Cockroaches socialize when meeting friends [10]. 
3. Cockroaches don’t reproduce with family members [11]. 
4. All cockroaches have the same potential to reproduce (no alpha male for example) [12]. 
5. Cockroaches hide their eggs in small dark shelters [12]. 
6. When a spot isn’t big enough to all  the roaches, they split themselves equally into several spots [13]. 
7. Cockroaches’ genetic code is very suitable for mutations , facilitating adaptation to several environments and 

survival [14]. 
8. Isolated cockroaches are less likely to explore and leave their shelters [15]. 
9. Cockroaches have many natural predators [16]. 
10.  Cockroaches have memory [17]. 



In the presented approach, the darkness level at some location is proportional to fitness function Z at that location 
(characteristic one). If one wants to minimize function Z at location 𝑥 ∈ ℝ𝐷 , darkness increases as much as 𝑍(𝑥) decreases.  
All cockroaches keep in memory (characteristic ten) the best location ever visited and the best location ever achieved by a 
friend. The best location ever achieved by a friend is updated when they socialize (characteristic two).  

In the beginning, it’s believed that there aren’t dark spots big enough to all swarm. So, a population consists on two equal  
sub-swarms seeking a dark spot (characteristic six). Those swarms are two different families and behave independentl y  
from the other family.  Using this independent multi-swarm approach one can escape from local optima and increase 
solution variability. 

Sometimes, a cockroach is able to reproduce (characteristic four) and finds a spot good enough to leave eggs (characteristic  
five). When it happens, it chooses a partner on the other family to have kids (characteristic three). Childs rise with a 
combination of parent’s knowledge. In order to promote a global search, it is possible that some random mutation occurs 
(characteristic seven). Population size is controlled by predators (characteristic nine). If one allows population to keep 
growing, then the algorithm execution time would be excessive. 

A tool to control global and local search is Cockroaches’ speed. Velocity is affected by the number of neighbours in the 
moment and the distance to the best solution.  

An isolated cockroach velocity is smaller than a surrounded one (characteristic eight). Another velocity controller is the 
distance to the best location ever achieved.  The closer a cockroach is to the best solution the smaller will be its velocity to 
promote a more local search in that area. 

GRIO’s search behaviour is equal to RIO’s one. Before movement, it’s necessary to verify if cockroach have friends inside its 
detection radius (defined by user). If there are friends in that detection radius, there is a probability (table 1) that these 
cockroaches will stop and socialize. Socialization is performed in algorithm by a comparison between roaches best-known 
position. So, when two roaches meet, both roaches best-known position is updated according to equation 5. 

Then, once the best-known position is updated, roach’s position is calculated using equations 6 and 2, respectively. 

a. Adaptive Inertia Weight 
 
An important parameter in all PSO-based algorithms is inertia weight. This parameter controls velocity. If it is a lower value 
there is a preference in local search once the previous velocity is not valorised and the final velocity will be smaller. If it is a 
higher value, there is a preference in global search, because the previous value is highly taken into account.  

As inertial weight is a major parameter to proper convergence and it is difficult to choose a suitable fixed inertia weight,  
several authors have been developing new techniques to introduce a variable inertial weight that adapts while algorithm is 
running.  

In this work, an adaptive linear decreasing inertia weight, adjusted to each particle/roach, is proposed. That way one can 
achieve better results once linear weight is adapting itself according to each situation.  On figure 1, linear weight adaptive 
system is represented by a flowchart. 

 

 
Figure 1: Adaptive behaviour's flowchart 

 
It’s important to promote a local search in final iterations and near optimum point. So, when a cockroach is about to be 
moved, his distance to the family’s best position ever achieved is checked (equation 7). 

𝑑 = √∑ (𝑏𝑝(𝑗) − 𝑥(𝑗)2)𝐷
𝑗=1                                                                               (7) 

 



In that equation, D represents problem dimension, bp is the best position ever achieved and x is the roach position. 

If that distance is smaller than the maximum distance (user defined), roach is inside the 
1

4
𝑁  closest roaches to family’s best 

position and iterations are bigger than 
3

4
𝑖𝑚𝑎𝑥 (imax is the highest iteration), then inertia weight is updated using equation 8, 

where N is the number of roaches in the swarm. 

𝑤 = −
0.45

𝑟𝑜𝑢𝑛𝑑 (
𝑁

4
)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐 𝑒2 + 0.45                                                                            (8) 

When roaches don’t meet criteria to use equation 6, inertia weight follows a linear decreasing method. So, as long as 
iterations are increasing, inertia weight is decreasing (equation 3). 

As accompanied cockroaches are more active then those isolated, it was defined a parameter (hyper-activity, equation 9) 
that is summed to regular linear decreasing inertia weight multiplied by number of neighbours  (equation 10). 

                                                                                              ℎ𝑎 = (−0.1
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+ 0.105) 𝑁𝑛                                                                                 (9) 

𝑤 = (𝑤𝑚𝑎𝑥 − 𝑖
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑖𝑚𝑎𝑥
) + ℎ𝑦𝑝𝑒𝑟 − 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦                                                           (10) 

As we use those equations, where Nn is the number of neighbours, instead of common inertia weights, one can adapt inertia 
weight and obtain more suitable results.  As one applies this adaptive inertia weight, a guideline equal to linear decreasing 
method is kept. However, sometimes it is bigger (when a cockroach has neighbours) or smaller (when a cockroach is near 
the best position ever achieved). In the final iterations there’s more variations from the linear guideline because there is 
more probability of having roaches groups and roaches near best position. 

b. Roaches Reproduction 
 
GRIO have a cooperative component between the two different and independent swarms. While reproducing, there is a 
share of the knowledge from one family to another.  

Reproduction is performed like a regular genetic algorithm [18]. First of all, one must be eligible to reproduce and that is 
possible when two conditions are satisfied: 

 Roach is on fertile window (emulated with a user defined random number). 
 Roach finds a secure spot to leave eggs (emulated when best known pos ition isn’t changed during five iterations).  

If these conditions are fulfilled at the same time, roach is able to reproduce and chooses the best-positioned roach in the 
opposite family. Once two reproducing roaches are selected, it’s necessary to choose the “genetic code” (vector with 
coordinates). This vector is generated creating one hundred different combinations of best-visited position vector (bv) and 
best-known position vector (bk). That way, one achieves a vector with information from two different memories of each 
roach. For each roach involved in the reproduction process, are chosen the best combination vector obtained and then a 
new crossover process is done and a kid is generated (the kid vector will represent the baby roach’s actual position, best 
known position and best visited position). One repeats this procedure until all kids (number decided by user) are born. Once 
it’s necessary to keep swarm size to avoid extra running time, after born, one kills N random extra roaches.  In figure 2 a 
flowchart of this process is represented. 

 

Figure 2: Reproduction behaviour flowchart 



c. Roaches’ Mutations 
 
A major issue in PSO based algorithms is premature convergence. In order to avoid it is necessary to keep diversity in search 
space. Otherwise solutions will converge into a single spot (a good one or not) and there wi ll be a huge unsearched and 
unknown space. 

Understanding that, there were introduced two kinds of mutations: replacement mutation and frameshift mutation. Every 
time a baby roach rises, there’s the opportunity of being a healthy one, or a mutant one (however only one kind of mutation 
will occur). 

 Replacement mutations: Some random values from kid’s vector are replaced by new values (figure 3, a)). 

 Frameshift mutations: A random sequence of values is allocated in a new place (figure 3, b)). 

 
Figure 3: Mutations. a) Replacement mutation. b) Frameshift mutation . 

 
V. Results and Discussion 

 
In this section, GRIO algorithm’s performance is tested in comparison to four other algorithms. In order to do it, there were 
selected some functions with known solutions.   

a. Benchmarks 
 
Benchmark functions are very useful once they allow one to test new algorithms using functions with pre-known solutions 
and characteristics. So, in order for a good test to be made to GRIO algorithm, one must choose carefully all the test functions. 
There are some characteristics one must be careful about: 

 Dimensionality: Measures the number of dimensions a function affords. Functions with more 
dimensions/parameters are more difficult to solve once the search space increases exponentially.  

 Modality: Measures the number of peaks. As a function has more peaks, the probability of being trapped in local 
optima increases. 

 Separability: Measures the difficulty of optimize a function. If a dimension depends on the other the function is 
independent from the other one and the problem is easier to solve than one with dimensions related to each other.   

 Valleys: This phenomenon occurs when a narrow area is surrounded by steep descents. If an algorithm is trapped 
into such region it can be difficult to leave and slowed. 

In this work, twenty three benchmark functions were tested and results analysed. All those functions were tested along with 
other four algorithms (one of them from another work as reference that can be consulted in references chapter). In master 
thesis Genetic Roach Infestation Optimization all results can be consulted and analysed, however, to keep size in this paper,  
only the hardest ones, according to all characteristics presented previously will be presented: 

 

Table 2: Benchmark functions specifications.  
Function Dimension Initialization Range Minimum Reference 
Ackley 30  [−32,32] 0 [19] 
Griewank 30 [−600,600] 0 [20] 
Langerman 10 [0,10] -1.4 [21] 
Michalewicz 10 [−𝜋,𝜋] -9.66015 [3] 
Paviani 10 [2.001,9.999] -45.778 [21] 
Rastrigin 30 [−5.12,5.12] 0 [20] 
Rosenbrock 30 [−2.048,2 − 048] 0 [20] 
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b. Experimental Tests 
 
Three PSO variants and reference algorithm were chosen to compare to GRIO algorithm. Therefore, used algorithms and 
conditions are listed: 

 Genetic Roach Infestation Optimization (GRIO) 
o Number of evaluations: 20 
o Maximum Iteration: 1000 
o Number of Particles in each swarm: 10 
o 𝐶1 and 𝐶2: 1.43 
o Maximum inertia weight (when using linear decreasing): 0.9 
o Minimum inertia weight (when using linear decreasing):  0.4 
o 𝑃𝑟𝑜𝑏_𝑟𝑒𝑝: 20% 
o 𝑃𝑟𝑜𝑏_𝑚𝑢𝑡_𝑟𝑒𝑝: 25% 
o 𝑃𝑟𝑜𝑏_𝑚𝑢𝑡_𝑓𝑟𝑎𝑚: 25% 

 PSO with random inertia weight (RN-PSO) 
o Number of evaluations: 20 
o Maximum Iteration: 1000 
o Number of Particles: 20 
o 𝐶1 and 𝐶2: 1.43 

o Maximum inertia weight: 1 
o Minimum inertia weight: 0 

 Reference one (with conditions optimal for that algorithm according to authors) 
 PSO with linear decreasing inertia weight (LW-PSO) 

o Number of evaluations: 20 
o Maximum Iteration: 1000 
o Number of Particles: 20 
o 𝐶1 and 𝐶2: 1.43 

o Maximum inertia weight: 0.9 
o Minimum inertia weight: 0.4 

 Roach Infestation Optimization (RIO) 
o Number of evaluations: 20 
o Maximum Iteration: 1000 
o Number of Particles: 20 
o 𝐶1 and 𝐶2: 1.43 
o Inertia weight: 0.7 

As one can see, with the exception of reference, number of evaluations, iterations and particles are exactly the same for a 
fair comparison. Actually, it was attempted to keep all variables on the same values to have a better comparison. Final results 
for all tests can be found on table 3.  In this table, best results achieved are bolded. 
 

          Table 3: Complete Results (bolded best results).  
Function   LW-PSO RW-PSO RIO GRIO Reference 
Ackley Best 1.244e+02 1.197e+01 4.424 2.841e-09 1.146e-04 

 Worst 3.124e+02 1.991e+01 1.970e+01 4.589e-07 3.901e-04 

 Mean 2.227e+02 1.709e+01 1.020e+01 1.482e-07 2.005e-04 

 Std. 4.753e+01 2.695 4.548 1.422e-07 3.772e-05        
Griewank Best 9.476e-04 1.048e-01 1.351e-12 0 1.480e-02 

 Worst 4.000e-02 1.014e+00 1.970e-02 2.929e-13 7.870e-02 

 Mean 1.600e-02 5.668e-01 7.500e-03 5.256e-14 4.91e-02 

 Std. 1.120e-02 2.702e-01 8.400e-03 8.535e-14 1.78e-02        
Langerman Best -1.4 -1.4 -1.4 -1.4 -2.128e-02 

 Worst -2.223e-13 -1.673e-13 -1.912e-13 -1.4 Na 

 Mean -1.015 -9.351e-01 -8.428e-01 -1.4 Na 

 Std. 5.574e-01 6.503e-01 0.671 3.482e-09 Na        
Michalewicz Best -9.362 -2.686 -9.2799 -9.66015 Na 

 Worst -5.640 -1.111 -5.8654 -9.6552 Na 

 Mean -7.300 -1.890 -7.9299 -9.6579 -5.8 

 Std. 0.8607 0.482 0.9422 0.0024 Na 
       
Paviani Best -45.778 -45.778 -45.778 -45.778 -14.053 

 Worst -45.778 -45.778 -45.778 -45.778 Na 

 Mean -45.778 -45.778 -45.778 -45.778 Na 

 Std. 1.124e-14 2.824e-14 1.310e-14 5.427e-10 Na        
Rastrigin Best 9.155e+01 3.097e+02 1.244e+02 0 8.512e-12 

 Worst 2.817e+02 2.843e+03 3.124e+02 1.810e-10 1.990 

 Mean 1.757e+02 7.733e+02 2.227e+02 4.296e-11 6.985e-01 

 Std. 5.051e+01 5.325e+02 4.753e+01 4.969e-11 7.284e-01        
Rosenbrock Best 1.227e+02 4.517e+03 4.629e+00 2.684e-05 6.687e-05 

 Worst 5.476e+02 8.719e+05 7.724e+01 7.904e-02 2.218e+01 

 Mean 2.710e+02 2.261e+05 2.899e+01 1.290e-02 2.835 

 Std. 1.079e+02 2.1432+05 1.976e+01 2.280e-02 3.583 

 

Time of processing and calculation is directly related to the number of times the objective function needs to be evaluated.  
Ideally an algorithm must be able to find the optimal point in the less time possible. For that reason, sometimes, is not 



profitable to have an algorithm that solves the problem in a time that doesn’t fit our needs  [21]. The Number of function 
evaluations is presented on table 4. 

It is also important to note that the number of times an algorithm needs to evaluate the function is dependent on the way 
the algorithm was programed. If the algorithm doesn’t achieve the global optima, then the number of functions evaluations  
is the correspondent to the 1000 iterations done (maximum). If it achieves, then the result presented in table 4 is the number 
of evaluations that the algorithm took until got there. The algorithms that achieved the best result using the less function 
evaluations are bolded. 

        Table 4: Function evaluations for each tested algorithm. Bolded the ones that achieved the best result. 
Function LW-PSO RW-PSO RIO GRIO 

Ackley 840e+03 840e+03 880e+03 1840e+03 

Griewank 840e+03 840e+03 880e+03 1722240 

Langerman 276360 58800 80960 427e+03 

Michalewicz 840e+03 840e+03 880e+03 732908 

Paviani 213360 66360 73040 107800 

Rastrigin 840e+03 840e+03 880e+03 1766400 

Rosenbrock 840e+03 840e+03 880e+03 1840e+03 

 
c. Results Discussion 

 
In order to better discuss and analyse results for all functions, some graphs are presented. For a better distribution analyses, 
aiming to determine if an algorithm is achieving results consistently or not, box plots are presented on figure 4. For 
convergence analysis, a path of best value is traced so that one can check the ability of all algorithms to escape from local  
optima (figure 5). Some convergence graphics have logarithmic or exponential scale for a better visual experience.  
Important to note that the following graphics do not include reference’s results (as tables presented previously) once all the 
test results weren’t available. 

Analysing all the tables above, one notes that GRIO outperforms all other algorithms with the exception of function Paviani. 
Actually, GRIO manages to get optimal value but in a less consistent way than other algorithms as can be seen in figure 4. 
Still on figure 4, as expected, GRIO algorithm results have mean value below all the other algorithms. Bigger boxes support 
that algorithm fell into local optima more often. That could be concluded from standard deviation values represented on 
table 2. In Ackley’s function, despite GRIO’s best result is an outlier one, GRIO’s worst result is much better than all other 
algorithms best value. 

Regarding convergence, interpretation from figure 5 is quite easy. If we check functions where GRIO wasn’t the only one to 
achieve the optimum point, we can see that all algorithms got a fast convergence to that point (even before the iteration 
100). However, in functions where other algorithms failed, due to lack of capacity to avoid local minima points, GRIO  could 
overcome those points and keep improving its score. If we look to GRIO’s line on Ackley and Rosenbrock functions (the only 
ones that GRIO couldn’t find the minimum in 1000 iterations) it is easy to spot that with more iterations the line should keep 
decreasing, once the algorithm wasn’t stuck in local points like other tested algorithms, and global minimum should, 
eventually, be found. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    Figure 4: Boxplots for hard functions.                                                      Figure 5: Convergence graphs for hard functions 

 
 
VI. Conclusions 

 
This work aimed to develop an algorithm capable to solve the most difficult continuous functions. Seeing an opportunity to 
improve RIO algorithm taking into account cockroaches social life, GRIO appeared.  
GRIO is an algorithm capable of escape from local optima and keep diversity in the search. This characteristics led GRIO to 
outperform other algorithms while optimizing very hard benchmark functions as can easily be seen in results and discussion 
chapter (on convergence analysis we can see that on functions were other algorithms couldn’t find optima soon, only GRIO 
could keep improving its result). 
On the Master Thesis Genetic Roach Infestation Optimization is proved that GRIO doesn’t outperform other algorithms in 
functions with few dimensions. In fact, is proved that GRIO’s performance is as better as complexity increases, because most 
of anti-premature convergence strategies from GRIO are based in changing information between dimensions. Meaning that 
if there are few dimensions, few information is changed as well.  
On the hardest functions, represented in this paper, due to its escape from local optima techniques and convergence velocity 
regulation among other details, GRIO was able to achieve results not seen with any other algorithm. 
Concluding, one may say that GRIO allows optimization of hard, high-dimensional and continuous functions.  
Finally, now that one knows about this algorithm’s potential,  some steps should be taken in order to transport GRIO 
algorithm to real applications. 
A discrete version of the algorithm must be made once that all real-life problems are modelled as discrete. One of those 
problems could be related to logistics’ industries in order to optimize delivery routes taking into account the kind of vehicle, 
transportation, deadlines, fuel’s consumption, etc.  
As a final point, analysing all the work done and previous conclusions, one may conclude that this work was concluded with 
success once that the main objective was achieved: produce an algorithm capable of solving the most difficult continuous  
functions. Also it was amazing to produce an algorithm with results never seen before for some functions , while learning 
how to create, test and compare a new approach. Competences that are highly valorised in a young engineer in the industrial  
world. 
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